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Abstract. We use the Fock-space representation of the quantum affine algebra of typeA
(2)
2n

to obtain a description of the global crystal basis of its basic level 1 module. We formulate a
conjecture relating this basis to decomposition matrices of spin symmetric groups in characteristic
2n+ 1.

1. Introduction

The Fock-space representation of the quantum affine algebraUq(ŝln) = Uq(A
(1)
n−1) was

constructed by Hayashi [16]. A combinatorial version of this construction was then used
by Misra and Miwa [29] to describe Kashiwara’s crystal basis of the basic representation
V (30). This made it possible to compute the global crystal basis ofV (30) [26]. Then, it
was conjectured that the degreem part of the transition matrices giving the coefficients of the
global basis on the natural basis of the Fock space wereq analogues of the decomposition
matrices of the typeA Hecke algebrasHm at an nth root of unity [26]. According to
a conjecture of James [17], these should coincide, forn prime and large enough, with
the decomposition matrices of symmetric groups Sm over a field of characteristicn. The
conjecture of [26] has been proved by Ariki [3], and by Grojnowski [15] using the results
of [14].

There is another approach to the calculation of decomposition matrices of typeA Hecke
algebras, relying upon Soergel’s results on tilting modules for quantum groups at roots of
unity [36, 37]. This approach also leads toq analogues of decomposition numbers expressed
in terms of Kazhdan–Lusztig polynomials. It seems that theseq analogues are the same as
those of [26] but there is no proof of this coincidence. In fact, the relationship between the
two approaches is still unclear.

The results of [26, 3, 15] have been applied recently by Fodaet al [12] to determine
which simpleHm modules remain simple after restriction toHm−1 and to show that this
problem is equivalent to the decomposition of a tensor product of level 1A

(1)
n−1 modules.

This provided an explanation for an intriguing correspondence previously observed in [13]
between a class of RSOS models and modular representations of symmetric groups.

Another description of theUq(A
(1)
n−1) Fock space, as a deformation of the infinite wedge

realization of the fermionic Fock space, was obtained by Stern [38]. In [25], theq bosons
needed for the decomposition of the Fock space into irreducibleUq(A

(1)
n−1) modules were
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introduced. This construction was used in [27] to give a combinatorial formula for the
highest weight vectors, and in [28] to define a canonical basis of the whole Fock space
which was conjectured to yield the decomposition matrices ofq Schur algebras at roots of
unity. Moreover, strong support in favour of this conjecture was obtained by establishing
its compatibility with a version of the Steinberg tensor product theorem proved by James
in this context [17, 28].

Recently, the theory of perfect crystals [21, 22] allowed Kashiwaraet al [24] to define
a general notion ofq Fock space, extending the results of [25] to several series of affine
algebras. Their results apply in particular to the twisted affine algebra of typeA

(2)
2n , which

is the case considered in this note.
It has been noticed by Nakajima and Yamada [33] that the combinatorics of the basic

representationV (3n) of A(2)2n was similar to the one encountered in the(2n + 1) modular
representation theory of the spin symmetric groupsŜm by Morris [30] as early as 1965.
This can be explained to a certain extent by observing that the(r, r̄)-inducing operators of
Morris and Yaseen [32] coincide with the Chevalley lowering operators of the Fock-space
representation ofA(2)2n . This provides a further example of the phenomenon observed in [26]
in the case of symmetric groups andA(1)n−1 algebras.

In this note, we give the analogues forUq(A
(2)
2n ) of the results of [26]. Using the level 1

q Fock spaces of [24], we describe an algorithm for computing the canonical basis of the
basic representationV (3n), which allows us to prove that this basis is in theZ[q] lattice
spanned by the natural basis of theq-Fock space, and that the transition matrices have an
upper triangle of zeros (theorem 4.1).

We conjecture that the specializationq = 1 gives, up to splitting of rows and columns for
pairs of associate characters, and for sufficiently large primesp = 2n+1, the decomposition
matrices of spin-symmetric groups. However, the reductionq = 1 is more tricky than in
theA(1)n−1 case. Indeed, theq-Fock space ofA(2)2n is strictly larger than the classical one, and
one has to factor out the null space of a certain quadratic form [24] to recover the usual
description.

The missing ingredient in the spin case when we compare it with [26] is that, since
the spin-symmetric groups are not Coxeter groups, there is no standard way of associating
to them a Hecke algebra, and this is an important obstruction for proving our conjecture.
What we can actually prove is that all self-associate projective characters ofŜm are linear
combinations of characters obtained from smaller groups by a sequence of(r, r) inductions
(theorem 6.1). This proof is constructive in the sense that the intermediate basis{A(µ)} of
our algorithm for the canonical basis, suitably specialized atq = 1, is a basis for the space
spanned by such characters.

This should have implications on the way of labelling the irreducible modular spin
representations of̂Sm. Up to now, a coherent labelling scheme has been found only for
p = 3 [8] andp = 5 [1]. The casep > 7 led to formidable difficulties. To overcome
this problem, we propose to use the labels of the crystal graph ofV (3n), which may
contain partitions with repeated parts not arising in the representation theory ofŜm, and
corresponding to ghost vectors of theq-Fock space atq = 1.

2. The Fock-space representation ofUq(A
(2)
2n)

The Fock-space representation of the affine Lie algebraA
(2)
2n can be constructed by means

of its embedding inb∞ = ĝo∞, the completed infinite rank affine Lie algebra of typeB
[10, 11].
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The (bosonic) Fock space of typeB is the polynomial algebraF = C[p2j+1, j > 0]
in an infinite number of generatorsp2j+1 of odd degree 2j + 1. If one identifiespk with
the power sum symmetric functionpk =

∑
i x

k
i in some infinite set of variables, the natural

basis of weight vectors forb∞ is given by Schur’sP functionsPλ (whereλ runs over the
set DP of partitions into distinct parts) [10, 40, 19].

The Chevalley generatorse∞i , f∞i (i > 0) of b∞ act onPλ by

e∞i Pλ = Pµ f∞i Pλ = Pν (1)

whereµ (resp. ν) is obtained fromλ by replacing its parti + 1 by i (resp. its parti by
i + 1), the result being 0 ifi + 1 (resp. i) is not a part ofλ. Also, it is understood that
Pµ = 0 as soon asµ has a multiple part. For example,f∞0 P32 = P321, f∞3 P32 = P42,
e∞1 P32 = P31 ande∞2 P32 = P22 = 0.

Let h = 2n+ 1. The Chevalley generatorsei , fi of A(2)2n will be realized as

fi =
∑
j≡n±i

f∞j (i = 0, . . . , n) (2)

ei =
∑
j≡n±i

e∞j (i = 0, . . . , n− 1) en = e∞0 + 2
∑
j>0

j≡0,−1

e∞j (3)

where all congruences are taken moduloh. LetA(2)2n
′ be the derived algebra ofA(2)2n (obtained

by omitting the degree operatord). The action ofA(2)2n
′ onF is centralized by the Heisenberg

algebra generated by the operators∂
∂phs

andphs for odd s > 1. This implies that the Fock

space decomposes underA(2)2n as

F =
⊕
k>0

V (3n − kδ)⊕p∗(k) (4)

where p∗(k) is the number of partitions ofk into odd parts. In particular, the
subrepresentation generated by the vacuum vector|0〉 = P0 = 1 is the basic representation
V (3n) of A(2)2n , and its principally specialized character is [20]

cht V (3n) =
∑
m>0

dimV (3n)m t
m =

∏
i odd

i 6≡0 modh

1

1− t i . (5)

The q-deformation of this situation has been discovered by Kashiwaraet al [24].
Contrary to the case ofA(1)n−1, the q-Fock space is strictly larger than the classical one.
We recall here briefly their construction, referring to [24] for details and notation.

Let DPh(m) be the set of partitionsλ = (1m12m2 . . . rmr ) of m for which mi 6 1
when i 6≡ 0 modh. For example, DP3(7) = {(7), (61), (52), (43), (421), (331)}. Set
DPh =

⋃
m DPh(m). Then, theq-Fock space of typeA(2)2n is

Fq =
⊕
λ∈DPh

Q(q)|λ〉 (6)

where forλ = (λ1, . . . , λr), |λ〉 denotes the infiniteq-wedge product

|λ〉 = uλ = uλ1 ∧q uλ2 ∧q · · · ∧q uλr ∧q u0 ∧q u0 ∧q · · ·
of basis vectorsui of the representationVaff. The quantum affine algebraUq(A

(2)
2n ) acts on

Vaff =
⊕

i∈ZQ(q)ui by

fiuj =
{
uj+1 if j ≡ n± imodh

0 otherwise
(i = 0, . . . , n− 1) (7)
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fnuj =


uj+1 if j ≡ −1 modh

(q + q−1)uj+1 if j ≡ 0 modh

0 otherwise

(8)

eiuj =
{
uj−1 if j ≡ n+ 1± imodh

0 otherwise
(i = 0, . . . , n− 1) (9)

enuj =


uj−1 if j ≡ 1 modh

(q + q−1)uj−1 if j ≡ 0 modh

0 otherwise

(10)

t0uj =


q4uj if j ≡ nmodh

q−4uj if j ≡ n+ 1 modh

uj otherwise

(11)

tiuj =


q2uj if j ≡ n± imodh

q−2uj if j ≡ n+ 1± imodh

uj otherwise

(i = 1, . . . , n− 1) (12)

tnuj =


q2uj if j ≡ −1 modh

q−2uj if j ≡ 1 modh

uj otherwise.

(13)

The only commutation rules we will need to describe the action ofei andfi on Fq are:

uj ∧q uj = 0 if j 6≡ 0 modh (14)

uj ∧q uj+1 = −q2uj+1 ∧q uj if j ≡ 0,−1 modh. (15)

The action on the vacuum vector|0〉 = u0 ∧q u0 ∧q · · · is given by

ei |0〉 = 0 fi |0〉 = δin|1〉 ti |0〉 = qδin |0〉 (16)

and on aq-wedge|λ〉 = uλ1 ∧q · · · ∧q uλr ∧q |0〉,
fi |λ〉 = fiuλ1 ∧q tiuλ2 ∧q · · · tiuλr ∧q ti |0〉 + uλ1 ∧q fiuλ2 ∧q · · · tiuλr ∧q ti |0〉

+ · · · + uλ1 ∧q uλ2 ∧q · · · uλr ∧q fi |0〉 (17)

ei |λ〉 = t−1
i uλ1 ∧q t−1

i uλ2 ∧q · · · t−1
i uλr ∧q ei |0〉 + t−1

i uλ1 ∧q t−1
i uλ2 ∧q · · · eiuλr ∧q |0〉

+ · · · + eiuλ1 ∧q uλ2 ∧q · · · uλr ∧q |0〉 (18)

ti |λ〉 = tiuλ1 ∧q tiuλ2 ∧q · · · ∧q tiuλr ∧q ti |0〉. (19)

For example, withn = 2, one has

f2|542〉 = (q4+ q2)|642〉 + q|552〉 + |5421〉
and

f2|552〉 = (q2+ 1)(|652〉 + |562〉)+ |5521〉 = (1− q4)|652〉 + |5521〉
the last equality resulting from (15).

It is proved in [24] thatFq is an integrable highest weightUq(A
(2)
2n ) module whose

decomposition into irreducible components, obtained by means ofq-bosons, is

Fq =
⊕
k>0

V (3n − kδ)⊕p(k) (20)

wherep(k) is now the number of all partitions ofk (compare (4)). Thus, the submodule
Uq(A

(2)
2n ) |0〉 is a realization of the basic representationV (3n).
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3. The crystal graph of theq-Fock space

The first step in computing the global basis ofV (3n) ⊂ Fq is to determine the crystal
basis of Fq whose description follows from [24, 21, 22]. LetA denote the subring
of Q(q) consisting of rational functions without pole atq = 0. The crystal lattice
of Fq is L = ⊕

λ∈DPh A |λ〉, and the crystal basis of theQ-vector spaceL/qL is
B = {|λ〉modqL, λ ∈ DPh}. We shall writeλ instead of|λ〉modqL.

The Kashiwara operators̃fi act onB in a simple way recorded on the crystal graph
0(Fq). To describe this graph, one starts with the crystal graph0(Vaff) of Vaff. This is the
graph with verticesj ∈ Z, whose arrows labelled byi ∈ {0, 1, . . . , n} are given, fori 6= n,
by

j
i−→ j + 1⇐⇒ j ≡ n± imodh

and for i = n by

j
n−→ j + 1⇐⇒ j ≡ −1, 0 modh.

Thus forn = 2 this graph is

· · · 1−→ −1
2−→ 0

2−→ 1
1−→ 2

0−→ 3
1−→ 4

2−→ 5
2−→ 6

1−→ 7
0−→ · · · .

The graph0(Fq) is obtained inductively from0(Vaff) using the following rules. Let
λ = (λ1, . . . , λr) ∈ B, and writeλ = (λ1, λ

∗) whereλ∗ = (λ2, . . . , λr). Then one has
f̃i(0) = δin(1), ϕi(0) = δin, and

f̃iλ =
{
(f̃iλ1, λ

∗) if εi(λ1) > ϕi(λ∗)
(λ1, f̃iλ

∗) if εi(λ1) < ϕi(λ
∗).

Here,εi(λ1) means the distance in0(Vaff) from λ1 to the origin of itsi-string, andϕi(λ∗)
means the distance in0(Fq) from λ∗ to the end of itsi-string.

Thus forn = 1 one computes successively the following 1-strings of0(Fq)

(0)
1−→ (1)

(2) = (2, 0)
1−→ (2, 1)

1−→ (3, 1)
1−→ (4, 1)

(3, 2) = (3, 2, 0)
1−→ (3, 2, 1)

1−→ (3, 3, 1)
1−→ (4, 3, 1)

from which one deduces that̃f1(3, 3, 1) = (4, 3, 1) andϕ1(3, 3, 1) = 1.
The first layers of the crystal0(Fq) for n = 1 are shown in figure 1. One can observe

that the decomposition of0(Fq) into connected components reflects the decomposition (20)
of Fq into simple modules. More precisely, the connected components of0(Fq) are all
isomorphic as coloured graphs to the component0(3n) containing the empty partition. Their
highest vertices are the partitionsν whose parts are all divisible byh. This follows from the
fact, easily deduced from the rules we have just explained, that ifν = hµ = (hµ1, . . . , hµr)

is such a partition, then the map

λ 7→ λ+ ν = (λ1+ hµ1, λ2+ hµ2, . . .) (21)

is a bijection from0(3n) onto the connected component of0(Fq) containingν, and this
bijection commutes with the operatorsẽi andf̃i . This implies that the vertices of0(3n) are
the partitionsλ = (λ1, . . . , λr , 0) ∈ DPh such that fori = 1, 2, . . . , r, one hasλi−λi+1 6 h
andλi − λi+1 < h if λi ≡ 0 modh. We shall call a partition that satisfies these conditions
h-regular. The set ofh-regular partitions ofm will be denoted by DPRh(m), and we shall
write DPRh =

⋃
m DPRh(m).



6168 B Leclerc and J-Y Thibon

Figure 1. The graph0(Fq ) for A(2)2 up to degree 7.

For example,

DPR3(10) = {(3331), (4321), (532), (541)}.

4. The canonical basis ofV (3n)

In this section, we describe an algorithm for computing the canonical basis (global lower
crystal basis) of the basic representationV (3n) = Uq(A(2)2n )|0〉 in terms of the natural basis
|λ〉 of theq-Fock space. To characterize the canonical basis, we need the following notations

qi =


q if i = n
q2 if 1 6 i < n

q4 if i = 0

ti =


qhn if i = n
q2hi if 1 6 i < n

q4h0 if i = 0

(22)

and

[k]i = qki − q−ki
qi − q−1

i

[k]i ! = [k]i [k − 1]i · · · [1]i . (23)

The q-divided powers of the Chevalley generators are defined by

e
(k)
i =

eki

[k]i !
f
(k)
i =

f ki

[k]i !
. (24)

The canonical basis is defined in terms of an involutionv 7→ v of V (3n). Let x 7→ x

be the ring automorphism ofUq(A
(2)
2n ) such thatq = q−1, qh = q−h for h in the Cartan

subalgebra ofA(2)2n , andei = ei , fi = fi . Then, forv = x|0〉 ∈ V (3n), definev = x|0〉.
We denote byU−Q the sub-Q[q, q−1] algebra ofUq(A

(2)
2n ) generated by thef (k)i and set

VQ(3n) = U−Q |0〉. Then, as shown by Kashiwara [23], there exists a uniqueQ[q, q−1]-basis
{G(µ), µ ∈ DPRh} of VQ(3n), such that
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(G1)G(µ) ≡ |µ〉modqL
(G2)G(µ) = G(µ).
To computeG(µ), we follow the same strategy as in [26]. We first introduce an auxiliary

basisA(µ) satisfying (G2), from which we manage to construct combinations also satisfying
(G1). More precisely, letFmq be the subspace ofFq spanned by|λ〉 for λ ∈ DPh(m) and set
V (3n)m = Fmq ∩ V (3n). Denote byE the natural order on partitions. Then, the auxiliary
basis will satisfy

(A0) {A(µ), µ ∈ DPRh(m)} is aQ[q, q−1]-basis ofVQ(3n)m,
(A1) A(µ) = ∑

λ aλµ(q)|λ〉, where aλµ(q) = 0 unlessλ D µ, aµµ(q) = 1 and
aλµ(q) ∈ Z[q, q−1],

(A2) A(µ) = A(µ).
The basisA(µ) is obtained by applying monomials in thef (k)i to the highest weight

vector, that is,A(µ) is of the form

A(µ) = f (ks)rs
f (ks−1)
rs−1
· · · f (k1)

r1
|0〉 (25)

so that (A2) is satisfied.
The two sequences(r1, . . . , rs) and(k1, . . . , ks) are, as in [26], obtained by peeling off

theA(2)2n ladders of the partitionµ, which are defined as follows. We first fill the cells of
the Young diagramY of µ with integers (called residues), constant in each column ofY . If
j ≡ n± imodh (06 i 6 n), the numbers filling thej th column ofY will be equal toi. A
ladder ofµ is then a sequence of cells with the same residue, located in consecutive rows at
horizontal distanceh, except when the residue isn, in which case two consecutiven cells
in a row also belong to the same ladder. For example, withn = 3 andµ = (11, 7, 7, 4),
one finds 22 ladders (indicated by subscripts), the longest one being the seventh, containing
three 3-cells:

319 220 121 022

313 214 115 016 117 218 319

37 28 19 010 111 212 313

31 22 13 04 15 26 37 37 28 19 010 .

Note that this definition of ladders agrees with that of [8] forn = 1, but differs from that
of [1] for n = 2.

Then, in (25),s is the number of ladders,ri the residue of theith ladder, andki the
number of its cells. Thus, proceeding with our example,

A(11, 7, 7, 4) = f0f1f2f
(2)
3 f2f1f0f1f2f

(2)
3 f2f1f

(2)
0 f

(2)
1 f

(2)
2 f

(3)
3 f2f1f0f1f2f3|0〉.

The proof of (A0) and (A1) can be readily adapted from [26]. In particular, (A1) follows
from the fact that a partitionλ belongs to DPRh if and only if all cells of a given ladder
intersectingλ occupy the highest possible positions on this ladder.

Another choice of an intermediate basis, more efficient for practical computations, would
be to use inductively the vectorsG(ν) already computed and to setA(µ) = f (ks)rs

G(ν), where
ν is the partition obtained fromµ by removing its outer ladder.

Define now the coefficientsbνµ(q) by

G(µ) =
∑
ν

bνµ(q)A(ν). (26)

Still following [26], one can check thatbνµ(q) = 0 unlessν > µ, where> denote the
lexicographic ordering on partitions, and thatbµµ(q) = 1. Therefore, one can apply the
triangular process of [26] as follows.
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Let µ(1) < µ(2) < · · · < µ(t) be the set DPRh(m) sorted in lexicographic order, so that
A(µ(t)) = G(µ(t)). Suppose that the expansion on the basis|λ〉 of G(µ(i+1)), . . . , G(µ(t))

has already been calculated. Then,

G(µ(i)) = A(µ(i))− γi+1(q)G(µ
(i+1))− · · · − γt (q)G(µ(t)) (27)

where the coefficients are determined by the conditions

γs(q
−1) = γs(q) G(µ(i)) ≡ |µ(i)〉modqL.

Thus, forn = 1, the first partition for whichA(µ) 6= G(µ) is µ = (3321) and

A(3321) = |3321〉 + q|333〉 + (q2− q6)|432〉 + (1+ 2q2)|531〉 + (q2+ q4)|54〉
+(2q2+ q4)|621〉 + 2q3|63〉 + (q4+ q6)|72〉 + q4|81〉 + q5|9〉. (28)

Indeed,A(3321) ≡ |3321〉 + |531〉modqL. On the other hand,A(531) = |531〉 + q2|54〉 +
q2|621〉+q3|63〉+q6|72〉 is equal toG(531), and one finds by subtracting this fromA(3321)
that

G(3321) = |3321〉 + q|333〉 + (q2− q6)|432〉 + 2q2|531〉 + q4|54〉
+ (q2+ q4)|621〉 + q3|63〉 + q4|72〉 + q4|81〉 + q5|9〉. (29)

SinceA(432) = |432〉 + q4|531〉 + q2|72〉 + q6|81〉 satisfies (G1) and (G2), it has to be
equal toG(432), which completes the determination of the canonical basis form = 9. For
m = 10, the results are shown in table 1.

In the Fock-space representation ofA(1)n−1, the weight of a basis vector|λ〉 is determined
by then core of the partitionλ (and its degree) [4, 26]. There is a similar result of Nakajima
and Yamada [33] forA(2)2n , in terms of the notion ofh core of a strict partition introduced by
Morris [30] in the context of the modular representation theory of spin-symmetric groups.

One way to see this is to use a theorem of [31] according to whichλ,µ ∈ DP(m) have
the sameh core if and only if they have, for eachi, the same numberni of nodes of residue
i. On the other hand, it follows from the implementation of the Chevalley generators that
|λ〉 hasA(2)2n weight3n −

∑
06i6n niαi , and the statement follows.

The definition ofh-cores can be extended to DPh by deciding that ifλ has repeated
parts, itsh- core is equal to that of the partition obtained by removing those repeated parts.
Then it is clear that if|λ〉 and |µ〉 have the sameUq(A

(2)
2n ) weight, the two partitionsλ

andµ have the sameh-core. It follows, sinceG(µ) is obviously a weight vector, that its
expansion on the basis|λ〉 involves only partitionsλ with the sameh-core asµ.

Table 1. The canonical basis forn = 1 andm = 10.

(3331) (4321) (532) (541)

(3331) 1 0 0 0
(4321) q − q5 1 0 0
(433) q2 q 0 0
(532) 0 0 1 0
(541) q + q3 q2 + q4 0 1
(631) 2q2 q3 0 q

(64) q4 0 0 q3

(721) q3 + q5 q2 0 q4

(73) q4 q3 0 q5

(82) 0 0 q2 0
(91) q4 q5 0 0
(10) q6 0 0 0
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Summarizing the discussion, we have:

Theorem 4.1.For µ ∈ DPRh(m), definedλµ(q) by G(µ) =∑λ∈DPh(m) dλµ(q)|λ〉. Then,
(i) dλµ(q) ∈ Z[q],
(ii) dλµ(q) = 0 unlessλ D µ, anddµµ(q) = 1,
(iii) dλµ(q) = 0 unlessλ andµ have the sameh-core.

5. The reduction q = 1

As observed by Kashiwaraet al [24], to recover the classical Fock-space representation
F of A(2)2n , one has to introduce the inner product onFq for which the vectors|λ〉 are
orthogonal and the adjoint operators of the Chevalley generators are

f
†
i = qiei ti e

†
i = qifi t−1

i t
†
i = ti . (30)

It can be checked that, forλ ∈ DPh,

〈λ|λ〉 =
∏
k>0

mkh∏
i=1

(1− (−q2)i) (31)

wheremkh is the multiplicity of the partkh in λ.
Let F1 denote theA(2)2n module obtained by specializingq to 1 as in [24]. This space is

strictly larger than the classical Fock-spaceF , since the dimension of itsmth homogeneous
component (in the principal gradation) is|DPh(m)| whereas that ofF is only |DP(m)|. Let
N = F⊥1 denote the nullspace. It follows from (30) thatN is aA(2)2n module, and from (31)
thatN is the subspace ofF1 spanned by the wedge products|λ〉 labelled byλ ∈ DPh−DP.
ThereforeF1/N is aA(2)2n module that can be identified withF .

In this identification one has, forλ = (λ1, . . . , λr) ∈ DP,

Pλ = 2
∑r

i=1b(λi−1)/hc|λ〉. (32)

The power of 2 comes from the fact that ifλi = kh for k > 0, andν denotes the partition
obtained fromλ by replacingλi by νi = λi + 1, then it follows from (1), (2) thatfnPλ
containsPν with coefficient 1, whilefn|λ〉 contains|ν〉 with coefficient 2 by (8). For later
use we set

ah(λ) =
r∑
i=1

⌊
λi − 1

h

⌋
. (33)

6. Modular representations of Ŝm

We refer the reader to [7] for an up-to-date review of the representation theory of the
spin-symmetric groups and their combinatorics.

Let Ŝm be the spin-symmetric group as defined by Schur [35], that is, the group of order
2m! with generatorsz, s1, . . . , sm−1 and relationsz2 = 1, zsi = siz, s2

i = z, (16 i 6 m−1),
sisj = zsj si (|i − j | > 2) and(sisi+1)

3 = z (16 i 6 m− 2).
On an irreducible representation ofŜm, the central elementz has to act by+1 or by−1.

The representations for whichz = 1 are actually linear representations of the symmetric
group Sm, and those withz = −1, called spin representations, correspond to two-valued
representations of Sm. The irreducible spin representations over a field of characteristic 0
are labelled, up to association, by strict partitionsλ ∈ DP(m). More precisely, let DP+(m)
(resp. DP−(m)) be the set of strict partitions ofm having an even (resp. odd) number of even
parts. Then, to eachλ ∈ DP+(m) corresponds a self-associate irreducible spin character
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〈λ〉, and to eachλ ∈ DP−(m) a pair of associate irreducible spin characters denoted by〈λ〉
and〈λ〉′.

According to Schur [35], the values〈λ〉(ρ) of the spin character〈λ〉 on conjugacy classes
of cycle- typeρ = (1m1, 3m3, . . .) are given by the expansion of the symmetric functionPλ
on the basis of power sums, namely

Pλ =
∑
ρ

2d(`(ρ)−`(λ))/2e〈λ〉(ρ)pρ
zρ

(34)

wherezρ =
∏
j j

mjmj ! and`(λ) stands for the length ofλ, that is the number of parts ofλ.
For λ ∈ DP(m), one introduces the self-associate spin character

〈̂λ〉 =
{
〈λ〉 if λ ∈ DP+(m)
〈λ〉 + 〈λ〉′ if λ ∈ DP−(m).

(35)

The branching theorem for spin characters of Morris [30] implies that if〈̂λ〉 gets identified
with a weight vector ofF by setting

Pλ = 2b(m−`(λ))/2c〈̂λ〉 (36)

then the b∞ operatorf = ∑
i>0 f

∞
i implements the induction of self-associate spin

characters from̂Sm to Ŝm+1. Similarly, e = e∞0 + 2
∑

i>0 e
∞
i implements the restriction

from Ŝm to Ŝm−1. Thus, the Fock-space representation ofb∞ may be viewed as the sum
F = ⊕

m C(m) of additive groups generated by self-associate spin characters ofŜm in
characteristic 0. In this setting, the Chevalley generators ofb∞ act as refined induction and
restriction operators.

Now, similarly to the caseA(1)n−1, the reduction fromb∞ to A(2)2n parallels the reduction
modulop = h = 2n+1 of representations of̂Sm (from now on we assume thath is an odd
prime).

More precisely, using (1), (2), (36), one sees immediately that the Chevalley generators
fi of A(2)2n act on〈̂λ〉 as the(r, r) induction operators of Morris and Yaseen(r = n+ 1− i)
[32]. Hence the vectors of degreem of V (3n) = U(A(2)2n )

−|0〉 can be identified with linear
combinations of self-associate spin characters obtained by a sequence of(r, r) inductions.
It is known from modular representation theory that the maximal number of linearly
independent self-associate projective spin characters ofŜm in characteristicp is equal to
the number of partitions ofm into odd summands prime top. Therefore the result follows
at once from (5).

Theorem 6.1.The self-associate projective spin characters ofŜm in characteristicp are linear
combinations of characters obtained by a sequence of(r, r) inductions.

This was proved by Bessenrodtet al [8] for p = 3 and Andrewset al [1] for p = 5,
but the question remained open forp > 7 [7].

Moreover, the construction of section 4 gives an explicit basis for the space spanned
by such characters. Denote byA(µ) the column vector obtained fromA(µ) by reduction
q = 1 and expansion on the basis〈̂λ〉. Then,A(µ) is a projective character by (25) and
{A(µ)|µ ∈ DPRp(m)} is a basis of theQ-vector space of self-associate projective spin
characters of̂Sm in characteristicp.

These observations and the results of [26, 3, 15, 28] lead us to formulate a conjecture
relating the global basis ofV (3n) and the decomposition matrices for spin characters of
the groupŝSm.
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Table 2. The decomposition matrix of̂S10 in characteristic 3.

(3331) (3331)′ (4321) (4321)′ (532) (541) (541)′

〈4321〉 0 0 1 1 0 0 0
〈532〉 0 0 0 0 1 0 0
〈532〉′ 0 0 0 0 1 0 0
〈541〉 1 1 1 1 0 0 1
〈541〉′ 1 1 1 1 0 1 0
〈631〉 2 2 1 1 0 1 1
〈631〉′ 2 2 1 1 0 1 1
〈64〉 1 1 0 0 0 1 1
〈721〉 1 1 0 1 0 0 1
〈721〉′ 1 1 1 0 0 1 0
〈73〉 1 1 1 1 0 1 1
〈82〉 0 0 0 0 1 0 0
〈91〉 1 1 1 1 0 0 0
〈10〉 0 1 0 0 0 0 0
〈10〉′ 1 0 0 0 0 0 0

Let µ ∈ DPRp(m) and letG(µ) stand for the image of the global basisG(µ) in
F = F1/N , that is,

G(µ) =
∑

λ∈DP(m)

2b(λ)−ap(λ)dλµ(1)〈̂λ〉 (37)

whereap(λ) is given by (33) and

b(λ) =
⌊
m− `(λ)

2

⌋
. (38)

Then denote byG(µ) the vector obtained by factoring out the largest power of 2 dividing

the coefficients ofG(µ) on the basis〈̂λ〉. For simplicity of notation, we shall identifyG(µ)

with the column vector of its coordinates on〈̂λ〉.
Finally, define the reduced decomposition matrix ofŜm in characteristicp as the matrix

obtained from the usual decomposition matrix for spin characters by adding up pairs of
associate columns and expanding the column vectors so obtained on the basis〈̂λ〉. This is a
matrix with |DP(m)| rows and|DPRp(m)| columns. The definition is illustrated in tables 2
and 3. (Table 2 is taken from [32], except for the column labels which are ours and will
be explained in the next section.)

Conjecture 6.2.(i) The set of column vectors of the reduced decomposition matrix ofŜm
in odd characteristicp such thatp2 > m coincides with{G(µ)|µ ∈ DPRp(m)}.

(ii) For p2 6 m, the reduced decomposition matrix ofŜm is obtained by postmultiplying
the matrix whose columns areG(µ) by a unitriangular matrix with non-negative entries.

Our conjecture has been checked on the numerical tables computed by Morris and
Yaseen [32] (p = 3) and Yaseen [39] (p = 5, 7, 11). Thus, forp = 3,m = 11, the columns
of the reduced decomposition matrix are

G(3332) G(4331)+G(641) G(5321) G(542) G(641).
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Table 3. The reduced decomposition matrix ofŜ10 in characteristic 3.

(3331) (4321) (532) (541)

〈4̂321〉 0 2 0 0
〈5̂32〉 0 0 1 0
〈5̂41〉 2 2 0 1
〈6̂31〉 4 2 0 2
〈6̂4〉 2 0 0 2
〈7̂21〉 2 1 0 1
〈7̂3〉 2 2 0 2
〈8̂2〉 0 0 1 0
〈9̂1〉 2 2 0 0
〈1̂0〉 1 0 0 0

7. Labels for irreducible modular spin characters and partition identities

The labels for irreducible modular representations of symmetric groups form a subset of the
ordinary labels [18]. It is therefore natural to look for a labelling scheme for irreducible
modular spin representations ofŜm using a subset of DP(m). This was accomplished for
p = 3 by Bessenrodtet al [8], who found that the Schur regular partitions ofm form a
convenient system of labels. These are the partitionsλ = (λ1, . . . , λr) such thatλi−λi+1 > 3
for i = 1, . . . , r − 1, andλi − λi+1 > 3 wheneverλi ≡ 0 mod 3.

In [8], it was also conjectured that forp = 5, the labels should be the partitions
λ = (λ1, . . . , λr) satisfying the following conditions: (1)λi > λi+1 for i 6 r − 1, (2)
λi − λi+2 > 5 for i 6 r − 2, (3) λi − λi+2 > 5 if λi ≡ 0 mod 5 or ifλi + λi+1 ≡ 0 mod 5
for i 6 r − 2, and (4) there are no subsequences of the following types (for somej > 0):
(5j+3, 5j+2), (5j+6, 5j+4, 5j), (5j+5, 5j+1, 5j−1), (5j+6, 5j+5, 5j, 5j−1). This
conjecture turned out to be equivalent to aq-series identity conjectured long ago by Andrews
in the context of extensions of the Rogers–Ramanujan identities, and was eventually proved
by Andrewset al [1]. The authors of [1] observed, however, that such a labelling scheme
could not be extended top = 7, 11, 13 (see also [7]).

In terms of canonical bases, the obstruction can be understood as follows. Assuming
our conjecture and using the results of [8, 1], one can see that forp = 3, 5, the labels of
[8] and [1] are exactly the partitions indexing the lowest non-zero entries in the columns of
the matricesDm(q) = [dλµ(q)]λ,µ`m. For example, in table 1, these are (10), (91), (82) and
(73), which are indeed the Schur regular partitions of 10. The problem is that forp > 7, it
can happen that two columns have the same partition indexing the lowest non-zero entry.
For example, withp = 7 (n = 3) andm = 21, the two canonical basis vectors

G(75432) = |75432〉 + q2|76431〉 + q|7752〉 + q3|7761〉 + q2|8643〉 + (q2+ q4)|8652〉
+q3|876〉 + q4|9543〉 + (q4+ q6)|9651〉 + q5|975〉

and

G(654321) = |654321〉 + q|75432〉 + q|76431〉 + q|76521〉 + q2|7743〉 + q2|7752〉
+q2|7761〉 + q3|777〉 + (q3+ q5)|8643〉 + (q3+ q5)|8652〉
+(q4− q8)|876〉 + (q3+ q5)|9651〉 + (q4+ q6)|975〉

have the same bottom partition(975) (compare [7], end of section 3).
On the other hand the partitions indexing the highest non-zero entries in the columns of

Dm(q) are the labels of the crystal graph (by theorem 4.1(ii)), so that they are necessarily
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distinct. Therefore, we propose to use the set

DPRp(m) = {λ = (λ1, . . . , λr) ` m|0< λi − λi+1 6 p if λi 6≡ 0 modp,

06 λi − λi+1 < p if λi ≡ 0 modp, (16 i 6 r)}
for labelling the irreducible spin representations ofŜm in characteristicp. Indeed its
definition is equally simple for allp. Moreover, because of theorem 4.1(iii), this labelling
would be compatible with thep-block structure, which can be read on thep-cores. Also,
it is adapted to the calculation of the vectorsA(µ) which give an approximation to the
reduced decomposition matrix.

Finally, we note that since DPRp provides the right number of labels we have the
following partition identity∑

m>0

|DPRp(m)|tm =
∏
i odd

i 6≡0 modp

1

1− t i (39)

which forp = 3, 5 is a counterpart to the Schur and Andrews–Bessenrodt–Olsson identities.
This happens to be a particular case of a theorem of Andrews and Olsson [2]. Namely,

one gets (39) by takingA = {1, 2, 3, . . . , p − 1} and N = p in theorem 2 of [2]. A
combinatorial proof of a refinement of the Andrews–Olsson partition identity has been
given by Bessenrodt [6].

One can also get a direct proof of (39) without using representation theory by simply
considering the bijections (21).

8. Discussion

We have used the level 1q-deformed Fock spaces of Kashiwaraet al [24] to compute the
canonical basis of the basic representation ofUq(A

(2)
2n ), and we have formulated a conjectural

relation with the decomposition matrices of the spin symmetric groups in odd characteristic
p = 2n+ 1.

As in the case ofA(1)n−1, it is reasonable to expect that in general, that is when 2n+ 1 is
not required to be a prime, the canonical basis is related to a certain family of Hecke algebras
at (2n + 1)th roots of unity. A good candidate might be the Hecke–Clifford superalgebra
introduced by Olshanski [34].

The case of 2nth roots of unity should then be related to the Fock-space representation
of the affine Lie algebras of typeD(2)

n+1. In particular we believe that the fact used by
Benson [5] and Bessenrodt–Olsson [9] that the 2-modular irreducible characters ofŜm can
be identified with the 2-modular irreducible characters of Sm corresponds in the realm of
affine Lie algebras to the isomorphismD(2)

2 ' A(1)1 .
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